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Analysis of finite-size corrections for the surface tension and surface stiffness 
coefficients in two-dimensional models with inclined interfaces is presented. We 
obtain a universal leading contribution proportional to (In L)/L for the 2D 
system of size L. By explicit calculations for restricted and unrestricted solid-on- 
solid models and the square lattice Ising model, we demonstrate the Gaussian 
nature of rough interfaces with fixed ends, and derive the leading 1/L-type 
corrections for appropriate surface quantities. 
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1. I N T R O D U C T I O N  

When thermodynamic system fluctuations are on a scale comparable to 
sample dimensions, the effects of finite size begin to play a major role. 
Studies of such finite-size effects, and of finite-size scaling in general, are of 
great importance for the theory of critical phenomena and for the inter- 
pretation of experimental and Monte Carlo data. When the finite-size 
corrections are known, the infinite-system (thermodynamic-limit) quan- 
tities can then be estimated by the use of proper extrapolation procedures. 

Finite-size scaling theory for the first- and second-order bulk phase 
transitions has been extensively developed in recent years (see refs. 1-6 for 
reviews). In addition, several results are available in the active field of 
surface and interface phase transitions. (7) Specifically, mean field methods (8) 
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and exact calculations for the two-dimensional (2D) Ising model (9 11) have 
been used to assess the effect of surfaces and interfaces on the bulk scaling 
behavior. Finite-size scaling at first-order wetting transitions has been 
studied recently (12~ for the 2D Ising model; the second-order wetting trans- 
ition was analyzed for the 2D solid-on-solid (SOS) model. (13) Furthermore, 
mean field results were obtained ~14) for the size effects on the thickness of 
wetting layers. Finally, universal scaling forms of the correlation length 
were reported ~5) for Ising strips with various boundary conditions. 

In studies of interfacial properties of lattice models, the average orien- 
tation of the interface is usually taken to be along one of the principal axes 
of the system. However, recent Monte Carlo studies (16) of the roughening 
transition and related interracial properties of the 3D Ising model have 
raised an important theoretical question regarding the finite-size effects on 
the anisotropic (angle-dependent) surface tension of rough interfaces. This 
issue has been addressed in refs. 17 and 18. Finite-size corrections for rough 
interfaces, i.e., for temperatures T R < T < T  c in  three dimensions and 
0<  T< Tc in two dimensions, were derived and a universal leading 
contribution proportional to (ln L) /L  was predicted for the 2D systems of 
size L. These results are based on the well-established directed random 
walk-like (Gaussian) properties of line interfaces in two dimensions. ~19~ 
Corresponding results for 3D systems have also been derived and justified 
by phenomenological arguments. 117) Recently, Gelfand and Fisher have 
developed (aS) a theory of finite-size effects on surface tension for general 
dimension, within the capillary wave type approach. (2~ Whenever com- 
parison is possible, the results of various approaches are consistent. 

In this work we present explicit calculations of finite-size corrections 
for the surface tension and surface stiffness coefficient in two-dimensional 
SOS and Ising models. Our purpose is to provide a "microscopic" 
derivation of finite-size corrections and compare them with those predicted 
in refs. 17 and 18. Our results fully confirm the phenomenological 
theory. (17) 

The format of this paper is as follows. In Section 2, we define the 2D 
Ising and SOS models with inclined interfaces and summarize predictions 
of the finite-size scaling theory for such interfaces. In Section 3, the leading- 
order results for the Ising and SOS models are derived and the Gaussian 
nature of interracial properties is explicitly verified. Some of these results 
are implicit in the earlier work of Park et al. ~22) for the SOS model and of 
Abraham C23) for the Ising model. Section 4 describes in detail the derivation 
of 1/L-type finite-size corrections for the surface tension and stiffness coef- 
ficient of inclined interfaces in SOS and Ising models. Our results are 
briefly summarized in Section 5, which is also devoted to discussion and 
conclusions. Appendix A presents further exact calculation of the SOS 
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model  par t i t ion functions, while Appendix  B is devoted to the discussion of 
the low- tempera ture  regime in which the var ious SOS and Ising model  
results become identical. 

2. IS ING I N T E R F A C E  IN T W O  D I M E N S I O N S :  DEF IN IT ION OF 
THE M O D E L  

Consider  a p lanar  lattice of Tsing spins s(x, y ) =  _+1 located at lattice 
points  (x, y), with x = 0, 1, 2 ..... L, and y = _+�89 _+ ~,..., _+ ( M -  �89 as shown 
in Fig. 1. The  spins interact  via neares t -neighbor  ferromagnet ic  interactions 
Jx and Jy, with Jx,y > 0. The corresponding configurat ional  energy, scaled 
by kB T, is given by 

L ( M  -- 3/2) 

E= -Ky  ~ ~, s(x, y) s(x, y+ l) 
x - - 0  y =  ( M - -  1/2) 

L -  I ( M -  i /2)  

-Kx  ~, Z s(x, y)s(x + l, y) (2.1) 
x = O  y-- --(M--1/2) 

where Kx, y = Jx, y/kB T. 
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Fig. 1. Two-dimensional Ising model with inclined interface pinned by its endpoints (0, 0) 
and (L,m). The average inclination angle is specified by tan O=m/L. The solid-on-solid 
configuration of the interface is shown by the solid line and is uniquely specified by the height 
variables hi. 
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In what follows we will make use of two types of boundary conditions: 

s~: s(x, + ( M - � 8 9  +1, s(O, y)=s(L, y ) =  +1 (2.2) 

which, for T< To, select states with positive spontaneous magnetization, 
and 

~: s(x, _+(M-�89 +1, s(0, y<>0)=_+l, s (L ,y~m)= +_1 (2.3) 

which force a long contour, beginning at (0, 0) and ending at (L, m), which 
separates the region of negative spontaneous magnetization from the region 
of positive spontaneous magnetization (see Fig. 1). Note that the average 
inclination of the interface can be measured by the angle 0 given by 
tan 0 -- m/L. Thus, an Ising system of size 2 ( M -  1) x L with an interface 
forming an average angle 0 with the x axis is considered. This interface can 
have arbitrary configurations consistent with the boundary conditions N. 
The partition function for the Ising model defined above can be obtained 
along the lines of refs. 9-11 and 23. We will describe this calculation in 
Section 3. 

The subset of solid-on-solid (SOS) interface configurations is selected 
by the requirement that there are no overhangs and bubbles (islands). Such 
configurations are then uniquely specified by the set of interface heights hi, 
measured from the reference level y = 0, as shown in Fig. 1. Obviously, the 
heights can take values 

hi=0, +1, -t-2 ..... + - ( M - l )  for i = 1 , 2  ..... L - 1  (2.4) 

In order to satisfy boundary conditions g ,  we require that 

ho = 0 and hL = m (2.5) 

i.e., the interface is pinned by its endpoints at (0, 0) and (L, m). A typical 
SOS configuration of the long contour is shown in Fig. 1. The 
corresponding SOS interfacial Hamiltonian, scaled by k B T, is 

L--1 
g s o s = g  ~ [hi+l-hi l~-(L ~-I ) V (2.6) 

i~l 

The first term in this expression, with U > O, mimics the surface tension 
contribution; it has the smallest value when all the heights hi are equal. The 
second term is obtained by counting the number of times the interface cuts 
across the vertical bonds (each time a contribution V is added). For the 
SOS configurations (no overhangs or islands) the number of such crossings 
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is always equal to L + 1. The SOS model partition function Z(m, L; M) is 
calculated from 

Zsos(m, L; M ) =  ~ exp( -Hsos )  (2.7) 

with (2.4) and (2.5), and the summation in (2.7) is over all allowed 
configurations {hi} of the interface. 

We will also consider the restricted solid-on-solid (RSOS) model, 
which is obtained when the height differences in (2.6) are restricted to 

lhi+l-h,]=O, 1 forall i (2.8) 

The critical behavior of the RSOS model is the same as that of the SOS 
model; however, the former is often considered for mathematical con- 
venience. In the following, we will analyze all three models (SOS, RSOS, 
and Ising) and calculate finite-size corrections approximately (Section 3) 
and exactly (Section 4). Presently, let us sumarize the finite-size properties 
of interfaces in 2D systems, as predicted by the general theory of ref. 17. 

Let Z(m, L; M ) =  ~ / ~ ,  with the boundary conditions d and 
defined in (2.2) and (2.3), denote the normalized partition function of an 
Ising-like system. For fixed m, with L and M large, the step free energy in 
two dimensions is defined (17) by 

Z(m, L; M) 
s(m, L; M ) =  - In  (2.9) 

Z(0, L; M) 

in units of ks T. If the inclination angle 0 is fixed by the requirement that 
m = L tan 0 (see Fig. 1 ), the surface tension per unit length, in units of k B T, 
can be obtained from 

cos 0 
0(0, L; M ) -  - -  In Z(L tan 0, L; M) (2.10) 

L 

For the geometry of Fig. 1, when the x axis coincides with the symmetry 
direction of the lattice, and with the assumption of the local minimum (17) of 
rr(0)/cos 0, the corresponding bulk (L = M = oo) quantities are 

and 

where 

s(m, oo, oo)=0 (2.11) 

a(O, oo, c~) 1 2 
cosO -=T+~KO + 0 ( 0  4) (2.12) 

r - a ( 0 ,  c ~ , ~ ) > 0 ,  ~c=a(0, o % c ~ ) + # ' ( 0 , ~ , ~ ) > 0  (2.13) 

We will always assume that M = O(L) and Irnl ~ L, which corresponds 
to ]0] ~ 1 in (2.10). The quantity ~c introduced in (2.12) is the surface 
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stiffness coefficient/17/ In order to obtain the finite-size corrections for 
quantities z and ~c in (2.12) and (2.13), we recall that the linear interface of 
length L fluctuates in the transverse direction on the scale ~ , , ~ .  
Therefore, when the size of the system in the transverse direction (M) is of 

order x/-{ or smaller, the interface fluctuations will be suppressed. 
However, since we assume M = O(L), the finite-M effects are exponentially 
small in M2/L~L and can be omitted. (In the next sections a 
mathematically precise verification of these statements will be given.) We 
are therefore left with the problem of determining finite-L, power-law 
corrections to the surface tension and stiffness. (Terms which are exponen- 
tially small in L will be neglected.) Such corrections have been estimated (lv~ 
by the following argument. Consider a long contour, with its endpoints 
pinned at (0, 0) and (L, m), as depicted in Fig. 1. The SOS configurations 
of this contour can be brought into a one-to-one correspondence (x~ with 
directed random walks between the same endpoints. The probability 
distribution for such a walk, starting from the origin, to reach the point 
(L, m), with m =-L tan O~LO, is Gaussian in m, for m ~ L ,  with width 
- x/-{. 

This directed random walk-like property of line interfaces in two 
dimensions is rather general. (19) Therefore, the following general 
phenomenological expression for the partition function has been 
proposed(17): 

Z(m, L)~- e x p ( -  zr L ) (  trL ,]2/2 ( -- ~c r m2'] 
\2nL/ exp 2L ] (2.14) 

Note that the original formula in ref. 17 [Eq. (5)] contains in addition the 
lattice spacing, denoted by 2 there, which is assumed to be unity 
throughout this paper. (Lattice spacing is one of the natural lengths in the 
problem and must be taken into account in order to properly scale other 
units of length.) The first term in (2.14) determines the free energy cost of 
creating an interface of length L. We thus expect that limL ~ ~ zL = 3. The 
last term, Gaussian in m (or 0), represents additional entropic effects due to 
the interface inclination, measured with respect to 0=0 .  The surface 
stiffness coefficient ~: in the bulk limit is given by (2.13), so that we expect 
l i m L ~  ~cL= ~c. Finally, the square root term in (2.14) comes from the 
normalization of the Gaussian distribution. (a7) 

Assuming that T L and ~:L are noncritical, the standard O(1/L) 
"endpoint" finite-size corrections for these quantities have been 
conjectured. (tT) Specifically, 

zi=z+-s , ~ r = ~ c + z + o  (2.15) 



Inclined Interfaces of Finite Length 1047 

where a, b, and other "constants" are temperature dependent. Using (2.14) 
and (2.15), with definitions (2.10) and (2.13), the following finite-size 
relations are easily derived: 

ln L a-ln[(~c/2~z) ~/2] ( 1 )  
~r(0, L)--- a(0, ~ )  +-~-~-~ L ~-o (2.16) 

l n L  b-a+ln[(~c/2~z) ~/2] ( 1 )  
~"(0, L) = a"(0, oe) - - ~ -  + L + o  (2.17) 

Note that the leading correction terms +_(lnL)/2L have no free 
parameters. 

The step free energy s(m, L) is now readily obtained from (2.9) and 
(2.14). We get 

s(m, L) ~ tcma/2L (2.18) 

A result equivalent to (2.18) was derived earlier by Fisher and Weeks (2~ 
within the capillary-wave theory. The argument similar to the one leading 
to (2.18) has been extended (17'18'2~ to 3D systems with T >  TR, i.e., for 
rough interfaces, We consider in this work the 2D case only, so that TR = 0. 
In the next section we derive the Gaussian form (2.14) by explicit model 
calculations. 

3. G A U S S I A N  B E H A V I O R  OF LINE I N T E R F A C E S  

In this section we set up the problem of calculating the partition 
function for a system with an inclined interface and show that, to leading 
order, it has the conjectured Gaussian form (2.14). The calculation will be 
performed for both unrestricted and restricted solid-on-solid models. We 
then outline Ising model results of a similar nature. 

In order to calculate the partition function (2.7), we will use the 
transfer matrix technique. First, introduce the variables 

u = e x p ( -  U), v = exp( - V) (3.1) 

and define a transfer matrix T with elements 

T,jS~ _- blln--j[ Tn jRSOS ____ urn- Jl (6o, n- j  + 3 1,1,,- 91 ) (3.2) 

for the SOS and RSOS models, respectively. The partition function is then 
expressed as 

Zsos(m, L; M) = v L + 1 (0 t T~-'l m ) (3.3) 
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where the states (01 and [m) correspond to vectors of length 2 M - 1  with 
the single nonzero entry go = 1 or g,~ = 1. These vectors correspond to the 
boundary conditions N. Expression (3.3) is evaluated, as usual, by 
calculating the eigenvalues and eigenvectors of T. Let us, for simplicity, 
consider first the RSOS model. In this case Tnj=0 except for ]n-jl =0,  1 
[see (2.8)] and the matrix T is tridiagonal. The eigenequation is 

Z T,~ gj = 2g, (3.4) 
i 

where the gi are the eigenvector elements and ). is the eigenvalue. These 
equations reduce to 

ug,,+t+g,,+ug,_l=2g,, for - (M-2)~n<<.M-2  (3.5) 

and the boundary conditions 

gM--I +UgM--2=2gM--1 
(3.6) 

gl M+ug2-M=).gl--M 

It is easy to see that (3.5) has solutions which can be even or odd m n ,  
However, the odd solutions are orthogonal to the vector (0t appearing in 
(3.3) and do not contribute to the partition function. We therefore seek 
solutions of (3.5) in the form 

g~ = C cos nq (3.7) 

where C = 1/x/-M is the normalization constant. Solution (3.7) will satisfy 
the recurrence (3.5) provided 

~.(q) = 1 + 2u cos q (3.8) 

Finally, substituting (3.7) in the boundary conditions (3.6), we obtain the 
quantization condition for q, i.e., cos Mq = 0, or 

(2j+ 1) ~z 
qJ= 2M ' j =  0, 1,..., M -  1 (3.9) 

The RSOS model transfer matrix therefore has M "even" eigenvalues 
)oj= 2(qj), where qj and 2(qj) are given by (3.9) and (3.8), respectively. 

The eigenproblem for the unrestricted SOS model can be solved in a 
similar way by using the fact that the inverse of T is a tridiagonal matrix. 
The symmetric eigenvector elements are also given by (3.7). We note that, 
in the case of the unrestricted SOS model, the quantization condition, 
yielding M even eigenvalues, is 

u sin q 
cot Mq = (3.10) 

1 - u cos q 
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in place of (3.9). Thus, the qj are not equally spaced and depend on u. For 
sufficiently large M, the solutions of (3.10) approach (3.9) with an error of 
the order 1/M 2. Finally, the eigenvalues of the unrestricted SOS model 
transfer matrix are given by 

1 - u  2 
2(q) = 1 - 2u cos q + u 2 (3.11 ) 

instead of (3.8). 
The partition function Z(m, L; M) for the RSOS model is obtained 

from (3.3). The right-hand side of (3.3) can be written in a more convenient 
form if the complete set of orthonormal states Iqi) is inserted, We obtain 

Z ( m , L ; M ) = v  L+I ~ (Olqi )  ; t~(qj [m)  (3.12) 
{qj} 

By using the explicit expression (3.7) for Iqj) and the fact that for the 
RSOS model 

qj+ ~ - qj = n /m  (3.13) 

[see (3.9)], Eq. (3.12) can be further expressed as 

uL+I M--1 
Z ( m , L ; M ) -  ~ (q j+, -q j )  2~cosmqj (3.14) 

7Z" j=O 

for the RSOS model. For M-+ oo this sum converges to an integral 

/)L+ 1 f~z Z(m,L; oo)--=Z(m,L)=---~ _, 2C(q)cosmqdq (3.15) 

with an error exponentially small in M2/L. Specifically, the leading 
difference between (3.14) and (3.15) for the RSOS model is of the form 

Z(m, L; o0 ) - Z(m, L; M) 
Z(m, L; ~ ) 

- ~ 2 e x p (  (l+2u)M2)uL c o s h ( l + 2 u )  M m u L  (3.16) 

Therefore, as long as M >~ x/'L, the finite-M effects can be neglected. This 
provides mathematical justificatiop for neglecting such effects in this paper, 
since we are assuming that M =  O(L) [see discussion following (2.13)]. 

For the SOS model, the transition from a sum of the type (3.12) to an 
integral form similar to (3.15) is more complicated. This is due to the fact 
that the qj in this case are not equally spaced and relation (3.13) is not 
strictly satisfied, i.e., this relation has additional terms of order 1/M 2. Thus, 

822/53/5 6-3 
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while it is obvious that the sum (3.12) for the SOS model converges to the 
integral (3.15) with (3.11), the precise form of this convergence, i.e., a 
relation analogous to (3.16), is more difficult to obtain. We have not 
investigated this matter in detail since this would lead to unilluminating 
mathematical complications. 

The M = oo partition functions for the specific models are thus given 
by 

uL+ I fn 
ZRsos(m, L) = ~ (1 + 2u cos q)C cos mq dq (3.17) 

and 
vL + I(1-- U2)L f *t cos mq dq 

Zs~ L ) = 2n _,~ (1-- 2u cos q + u2) L (3.18) 

These functions can be calculated exactly by analytic evaluation of the 
integrals. We describe these calculations in Appendix A. For the purposes 
of the present section, however, in order to show that the leading behavior 
of Z(m, L) is Gaussian in m, i.e., of the form (2.14), it is sufficient to 
evaluate the integrals in (3.17) and (3.18) approximately. In particular, 
let us replace cosq~- l -q2/2 ,  and further put (l_+_const-q2) c ~  - 
exp(+_const, q2L). This leads to the following expressions: 

VL+I(1 +2U)L [ TM ( 
ZRsos(m, L) ~- ~ J-= exp 

Zsos(m,L ) VL+I( I+u~L[  ~ e x p (  

1 + 2uJ cos mq dq (3.19) 

uLq 2 
( i-----~ ] cos mq dq (3.20) 

Observe that the integrals are saturated at Iq] ~ 1 / ~ ,  which justifies the 
small-q approximation. Finally, since L is large, the limits of integration in 
(3.19) and (3.20) can be extended to ( - 0 %  + oo). Thus, we obtain 

ZRs~ 1 ) 2~L 

m 21 + 2u'~ 
x exp 2L 2u J (3.21) 

and 

as~ 2~Ljl ]1/2 

m 2 (t - u) 2] 
x exp 2L ~u J (3.22) 
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Expressions (3.21) and (3.22) are precisely of the Gaussian form 
(2.14). The above is therefore a "microscopic" derivation of random walk- 
like property of line interfaces. As mentioned in the Introduction, the result 
(3.22) is implicit in ref. 22. In the next section, we will show a posteriori, by 
a systematic expansion of the partition functions (3.17) and (3.18), that the 
approximations (3.21)-(3.22) are indeed valid, and calculate the leading 
corrections. 

By comparing (3.21) and (3.22) with (2.14), the bulk values for v and 
~c [see (2.15)-] can be simply read off. They are 

and 

l + 2 u  
= - ln[v(1 + 2u)], ~c = - -  (RSOS model) (3.23) 

2u 

(1 + u'~] (1 - u) 2 (SOS model) (3.24) z = - l n  v \1 _ - - ~ / j ,  ~ =  2-----U~ 

Note that the above expressions for the two models become equivalent for 
small u, i.e., at low temperatures, as expected. 

Approximate expressions similar to (3.21) and (3.22) can also be 
derived the Ising model specified by (2.1). Using the well-known duality 
relation (~~ between the correlation function and the interfacial free 
energy, the partition function for the Ising model can be obtained in the 
form 

e 2~q, S cos mq dq (3.25) 
Zlsing(m , L)  = ~  rr cosh LT(q) + sinh LT(q) cos 8*(q) 

Here y(q) and g*(q) are the elements of Onsager's hyperbolic triangle (23) 

cosh 7(q) = cosh 2K* cosh 2Ky - sinh 2K* sinh 2Ky 

cosh 2Ks cosh 7(q) - cosh 2K* 
cos 6*(q) = 

sinh 2Ky sinh 7(q) 

cos q (3.26) 

(3.27) 

and the dual couplings Kx*y are defined by exp( -2Kx .y )= tanh  * Kx, y. In 
(3.26) we select the branch for which 7(q)> 0. (Recall that T <  Tc here.) 
Note that the partition function (3.25) has the same structure as the 
analogous SOS and RSOS partiton functions (3.17) and (3.18). In par- 
ticular, by neglecting terms exponentially small in L, we can write (3.25) in 
the form 

exp(-2Ky)  ~- 2 exp[ -LT(q) ]  cos mq dq Zlsing(m, L) (3.28) 
2re J ~ 1 + cos 6*(q) 
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The functions 7(q) and cos 6*(q) in this expression can be expanded for 
small q, yielding the exponential factor with the leading q dependence of 
the form exp(const, qZL). The integration, when extended to the interval 
( - ~ ,  +oo), can then be performed easily. We get (up to a constant 
prefactor) 

F sinh 7(0) 1 ~1/2 
Z~ng(m, L)~ e x p [ -  LT(O)] Lsinh-~* sinh 2Ky 2~LJ 

I m 2 sinh 7(0) ] 
x exp - 2L sinh 2-~* s-inh 2KyJ (3.29) 

where we used 

q2 sinh 2K* sinh 2Ky+ O(q4), cos 6*(q) = 1 + O(q 2) (3.30) 
7(q) -- 7(0) -~ 2 sinh 7(0) 

Clearly, the partition function (3.29) has the Gaussian form (2.14), as 
conjectured/17) We thus obtain the well-known results for the Ising model 

sinh 7(0) 
~ =7(0), ~c= (3.31) 

sinh 2K* sinh 2Ky 

by comparing (3.29) with (2.14) and (2.15). Recall (1~ that 7(0) is precisely 
equal to the bulk surface tension of the Ising model: 7(0)= 2(,,,y-K~ ). 
The relations (3.29) and (3.30) simplify for the isotropic model, i.e., when 
Kx = K y -  K, since sinh 2K* sinh 2K= 1. In the next section, the leading 
finite-size corrections to z and • for all three models (SOS, RSOS, and 
Ising) will be calculated. 

4. FINITE-SIZE PROPERTIES OF INCLINED INTERFACES: 
EXACT RESULTS FOR ISING A N D  SOS MODELS 

In this section we derive exact expressions for the surface tension and 
stiffness coefficient of the inclined interface shown in Fig. 1. As in Section 3, 
we will assume that M,,~ O(L), so that the partition functions Zsos(m, L), 
ZRSOS(m, L), and Zlsing(m , L) are given by (3.17), (3.18), and (3.28), with 
corrections exponentially small in M2/L, as discussed earlier. We consider 
first the SOS models. 

It turns out that the integrals in (3.17) and (3.18) can be evaluated 
analytically in terms of the hypergeometric functions 2 F1. These calculation 
are described in Appendix A. However, the expressions thus obtained are 
not very useful for finite-size analyses. Instead, in order to obtain Z(m, L) 
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as asymptotic series in powers of 1/L, we evaluate the integrals (3.17) and 
(3.18) [-and later (3.25)] for large L by a steepest-descent-type method. In 
particular, the integrals (3.17) and (3.18) can be more conveniently written 
a s  

V L + I  r~ 

Z(m,L)=-~-~-f exp{L[ln2(q)+iqtanO]}dq (4.1) 

where 2(q) is given by (3.11) [(3.8)] for the SOS [RSOS] model, and we 
used m = L tan 0. Similar expression can also be derived for the Ising 
model (see below). An integral of the type (4.1) has to be analyzed for large 
L. Let us consider the SOS model in some detail. In this case, (4.1) 
becomes 

Zsos(m, L ) =  
v L + l ( l _ u : )  L 

2~z 

f 
~z 

x exp{-L[ln(1-2ucosq+u2)-iqtanO]}dq (4.2) 

To proceed, we expand the function 

f(q) = ln(l - 2u cos q + / , / 2 )  _ iq tan 0 (4.3) 

near the extremum at qo given by 

qo= i s inh -1  ( - - ~ u  - 14 
(1--u2)2tan2011/2~ 

4u 2 J JJ  (4.4) 

which, for small 0, has the form 

. ( 1  - u) 2 tan 0 
[1 + O(tan 20)] (4.5) qo = z 2u 

The function f(q) is expanded as 

where 

and 

f(q)=f(qo)+~.f'(qo)(q-qo)2+ ... 

f ( q o ) = 2  l n ( 1 - u )  q 
tan 2 0 (1 - u )  2 

2 2u 

(4.6) 

2u I (1-u)Z(l+4u+u2) f'(qo)=(l_~)2 l + t a n  20 8u 2 +O(tan 40)]  (4.8) 

~- O(tan 40) (4.7) 
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Substituting (4.6) (4.8) in the integral (4.2), shifting the contour, extending 
the limits of integration to ( -  o% + oo), etc., we finally obtain 

Zsos(tan 0, L) 

- \-l---~-u/ L 2-u 2zL J 

{ " tan2 0 [ - ( 1 - u ) 2 ~  _ 2-u (1-u)2(l+4u+u2)8u2L (~--~2)]} x exp - r | I- f- O 

(4.9) 

In order to obtain finite-L corrections for the surface stiffness coef- 
ficient ~L [-see (2.15)], we form the ratio 

Zsos(0, L ) = e x p  , L  (4.10) 

[-see (2.14)], from which, by the use of (4.9), we obtain the leading finite-L 
behavior of ~cL in the form (2.15), with 

( l - u )  2 ( l - u )  2 (1 + 4 u +  u 2) 
~c= 2----~' b =  8u 2 (SOS model) (4.11) 

Similarly, by comparing Zsos(0, L) from (4.9) with (2.14), we find that the 
leading large-L behavior of zL is of the form (2.15) with 

[ +"ll z = - l n  V\l_u]j, a =  - l n v  (SOS model) (4.12) 

Corresponding calculations for the RSOS model are almost identical 
with the above, and we only quote the results here. The surface tension and 
the surface stiffness coefficient are again of the form (2.15)-(2.17) with 

z = - ln[v(1 + 2u)], a = - l n  v (4.13) 

1 +2u  1 - 2 u - 8 u  2 
= 2 ~ '  b -  8u 2 (RSOS model) (4.14) 

Note that b changes sign at u-- 1/4. 
The Ising model calculation can also be performed along the same 

lines starting from the expression (3.28). In this case there is a slight com- 
plication due to the term [ l + c o s 6 * ( q ) ]  in the denominator of the 
integrand [-see (3.28)]. However, this function can be expanded in powers 
of ( q - q0 )  and integrated term by term. It is easy to see that the first non- 
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trivial contribution of this factor to the finite-L corrections will be of order 
1/L for the surface stiffness coefficient and of order 1/L 2 for the surface 
tension. The remaining calculations are straightforward but cumbersome. 
We only quote the Kx = Ky = K results here (see Appendix B for K x :/= Ky). 
The surface tension vL and stiffness coefficient ~c/~ are of the form (2.15)- 
(2.17) with 

and 

K = sinh 7(0), 

for the Ising model. 

r =7(0), a = 2 K  (4.15) 

b -- �89 2 2K* + sinh 2 7(0) + 3 cosh 7(0)] (4.16) 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

In summary, we have shown by explicit calculations for the SOS, 
RSOS, and Ising models with inclined interfaces that the leading finite-size 
behavior is precisely as predicted by the finite-size scaling theory of ref. 17. 
We have demonstrated the Gaussian, or random walk, property of line 
interfaces in these models. Note that the 1/x/L prefactor in the partition 
function (2.14) may not be strictly associated with the Gaussian form but 
may also be present in a more general rn dependence, as detailed analyses 
of the prefactors in (A.8) and (A.I2) show. Therefore, the leading 
(ln L) / (2L)  correction for the surface tension is more generally valid; see 
also ref. 22. The finite-size behavior of the SOS and RSOS models is almost 
identical, except for differences in various nonuniversal coefficients and a 
notable change of the sign of the leading finite-size correction term b for 
the RSOS surface stiffness coefficient [see (4.14)]. The equivalence among 
the three models is recaptured in the low-temperature limit, as expected 
(see Appendix B). 

A P P E N D I X  A: EXACT PARTIT ION F U N C T I O N S  FOR THE 
S O L I D - O N - S O L I D  M O D E L S  

Our goal is to evaluate exactly the partition function 

vZ~+l(1-u2)L f ~ co smqdq  (A.1) 
Zsos(m, L ) = 2~ _ ~ ( 1 -  2u eos q + u2) L 

and it is instructive to describe the calculation in some detail. Consider the 
integral 

( _L 
1 ~ ~_uy j cos mq dq (A.2) i ( m , L ) = f  ~ 2u cos q'] 
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This integral can be evaluated in the closed form by the use of tables (24) 
and certain algebraic manipulations. In particular, (A.2) can be expressed 
in terms of the associated Legendre functions PT- 1( c~ ~b). First, introduce 
the auxiliary variable qi by 

1+ll  2 i 
= (A.3) 

2u tan 

and use the integral representation 124) 

PT j.(x) ( - i ) m ( L  - 1)[ f'~ x2)1/2 - 2 r e ( L - m - I ) !  ~ [ x + i ( 1 -  c o s q ] - L c o s m q d q  (A.4) 

After a little algebra we obtain 

2n( L - m - 1 )! 
I(m, L) - -(_----~(--s ~ cosC(ql) eT-~(cos ~b) (A.5) 

where the variable ~ is defined by (A.3). The next step is to express the 
associated Legendre function P~,(x) in terms of the hypergeometric 
function 2F1 via (24) 

(-1)m(2n) ! (I__X2)m/2[X+(X2 1)l/2]n m 
pm(x) = 22n--mn! (n -- m)! 

1 1 x - ( x 2 - 1 )  1/2"] 
x zF 1 m - n , - ~ + r n , - ~ - n ,  (h.6) X'q- (X 2 -  1)1/2// 

Finally, we perform the Kummer transformation ~24) on the hypergeometric 
function 2F1, i.e., 

aFl(C~, fl, ?, z )=  ( 1 -  z) r fl, 7 - e ,  7 , -  (A.7) 
z - 1  

Note that, after transformations (A.6) and (A.7), the L dependence of P~_ l 
will be contained in the third parameter 7 of the hypergeometric function, 
which is a power series in terms of 1/7. With the use of (A.5)~(A.7) and 
definition (A.3), after a long but straightforward algebra, the partition 
function (A.1) reduces to 

Zs~ r(L--�89 (t+tt~L[ I F ( L )  \-f--~--~,] 21~ (1--u)2]l/22-tt _] 

1 1 _3 L (1--u)2~ 
x2F1 - 2 + m ' 2 - m ' 2 -  ' 2u J (a.8) 
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where F(x) is the usual gamma function. Note that the m dependence of 
Zsos(m, L) enters only in the function zF~ in a symmetric way, i.e., 
Z(-m, L)= Z(m, L), as expected. 

In a similar manner, the RSOS partition function 

V L+I frt ZRsos(m,L)---~ (l + 2ucosq)Lcosmqdq (A.9) 

can be evaluated exactly. First, we introduce the auxiliary variable q~ by 

2u = i tan ~b (A.10) 
and recall ~24) that 

P'~(x) = im(L + m)! f~ [ x + i ( 1 - - x 2 ) l / 2 c o s q ] L c o s m q d q  (A.11) 
2~zL! 

Second, we express P~ via (A.6) in terms of 2F1 and, finally, transform zF~ 
by the use of (A.7). The final result, after a long algebra, is 

ZRSOS(n.7, L)=ljL+I r 2L ~(I+2u'~L(I+2u~ 1/2 
\ L - m } \  4 } \ ~ )  

(~ 1 1 2u- l '~  
x2F ,  _ +m,~--m,~--L,--~u j (A.12) 

Note that this expression reduces to a very simple form for u = 1/2, 

ZRsos (m, L; u = ~) = v (2) L (L2__Lm) (A.13) 

which can, in fact, be used to study the pattern of higher-order finite-size 
corrections. 

A P P E N D I X  B: EQUIVALENCE BETWEEN ISING A N D  SOLID-  
O N - S O L I D  M O D E L S  AT LOW T E M P E R A T U R E S  

In this Appendix we show that the results obtained for the finite-size 
corrections of Ising and solid-on-solid models, (4.11)(4.16), become 
identical at low temperatures. This can be achieved by identifying 

U=2Kx, V=2Ky (B.1) 

in the SOS Hamiltonian (2.6), so that 

u = exp(-2Kx),  v=exp(-2Ky) (B.2) 

in (3.1), etc. 
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First, we report the results on finite-size corrections for the anisotropic 
(Kx SKy) Ising model surface tension and stiffness coefficient vL and ~L- 
This calculation has been outlined in Section 4 and we only quote the 
results here: 

and 

r = 7(0) -= 2(Ky - K*), a = 2Kv (B.3) 

sinh 3,(0) 
~c = (B.4) 

sinh 2K~* sinh 2Ky 

1 [- sinh 2 7(0) 3 cosh ?(0) 1 7 
b=~[_sinh2-~.si--~22Ky, ~-sinh2K, sinh2K~ ' I-sinh22Kyj (B.5) 

Derivation of (B.5) requires rather long algebraic calculations. 
In the low-temperature limit Ky=Jy/kBT is large, while K* is 

exponentially small. We thus obtain the leading results 

r ~_ 2Ky, a = 2Ky, ~: -~ e2Kx/2, b " ~  e4Kx/8 (B.6) 

On the other hand, the SOS model results (4.11)(4.14) in the low- 
temperature limit (u, v small) give 

1 1 
-~ - I n  v, a = - I n  v, ~c ~ ~uu' b _~ ~5u2 (B.7) 

By (B.2), the results (B.6) and (B.7) are identical, as anticipated. As shown 
in ref. 25, the unrestricted SOS model calculation of the surface tension 
(but not ~c) reproduces, in fact, the exact 2D Ising model result. Indeed, 

7(0) - 2(Ky - K*) = ln(e2Kye--2/s 

(v l+u'~ 
= ln(e 2~ tanh Kx) = - I n  \ 1 - u} (B.8) 

It is interesting that the SOS model result for the leading 1/L correction 
coefficient a is also exact [see (4.12) and (2.15)-(2.17)], 

A C K N O W L E D G  M ENTS 

Research by V.P. and N.M.S. has been supported in part by the U.S. 
National Science Foundation under grant DMR-86-01208, and by the 
donors of the Petroleum Research Fund, administered by the American 
Chemical Society, under grant ACS-PRF-18175-G6. This financial 
assistance is gratefully acknowledged. 



Inclined Interfaces of Finite Length 1059 

R E F E R E N C E S  

1. M. E. Fisher, in Critical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971), 
p. 1. 

2. M. N. Barber, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and 
J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 145. 

3. V. Privman and M. E. Fisher, J. Stat. Phys. 33:385 (1983). 
4. K. Binder and D. P. Landau, Phys. Rev. B 30:1477 (1984). 
5. M. E. Fisher and V. Privman, Phys. Rev. B32:447 (1985). 
6. M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B34:1836 (1986). 
7. D. Sullivan and M. M. Telo da Gama, in Fluid and Interfacial Phenomena, C. A. Croxton, 

ed. (Wiley, New York, 1986). 
8. H. Nakanishi and M. E. Fisher, J. Chem. Phys. 78:3279 (1983). 
9. H. Au-Yang and M. E. Fisher, Phys. Rev. B 21:3956 (1980). 

10. D. B. Abraham, in Phase Transitions and Critical Phenomena, Vol. 10, C. Domb and 
J. L. Lebowitz, eds. (Academic Press, New York, 1986), p. 1. 

11. D. B. Abraham and N. M. ~vraki6, Phys. Rev. Lett. 56:1172 (1986). 
12. G. Forgacs, N. M. gvraki6, and V. Privman, Phys. Rev. B 37:3818 (1988). 
13. V. Privman and N. M. gvraki6, Phys. Rev. B 37:3713 (1988). 
14. R. Lipowsky and G. Gompper, Phys. Rev. B 29:5213 (1984). 
15. T. W. Burkhardt and I. Guim, Phys. Rev. B 35:1799 (1987). 
16. K. K. Mon, S. Wansleben, D. P. Landau, and K. Binder, Phys. Rev. Lett. 60:708 (1988). 
17. V. Privman, Phys. Rev. Lett. 61:183 (1988). 
18. M. P. Gelfand and M. E. Fisher, Int. J. Thermophys. (1988), in press. 
19. M. E. Fisher, J. Stat. Phys. 34:667 (1984). 
20. D. S. Fisher and J. D. Weeks, Phys. Rev. Lett. 50:1077 (1983). 
21. R. F. Kayser, Phys. Rev. A 33:1948 (1986). 
22. H. Park, E. K. Riedel, and M. den Nijs, Ann. Phys. (N.Y.) 172:419 (1986). 
23. D. B. Abraham, Stud. Appl. Math. 50:71 (1971). 
24. I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic 

Press, New York, 1980). 
25. E. Miiller-Hartmann and J. Zittartz, Z. Phys. B 27:261 (1977). 


